
1

Deniability - an Alibi for Users in P2P Networks
Ofer Hermoni, Niv Gilboa, Eyal Felstaine and Sharon Shitrit

Department of Information Systems Engineering,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

{oferher,gilboan,eyalfe,shitrits}@bgu.ac.il

Abstract—Peer to peer file sharing is ’booming’, but meanwhile
censorship of these networks and prosecution of users that share
censored content are growing just as quickly. In this paper, we
propose a novel notion ofdeniability as an easy and efficient
method for users to avoid censorship and prosecution. The
fundamental concept is that a given data element, which contains
controversial or censored content, is also associated with neutral-
content material. Hence, even a powerful adversary capable
of monitoring all communication in the network and viewing
the internal state of participating hosts is unable to prove a
link between censored content and a user. The communication
overhead required to retrieve a document is only four times
greater than what is needed in a standard network. The storage
required for a document is only twice as large as the document
itself. Deniability is an elegant alternative to user anonymity in
P2P file sharing networks. Systems that provide anonymity for
users typically require greater overhead and do not guarantee
anonymity against powerful, real-world adversaries.

I. I NTRODUCTION

Peer-to-peer (P2P) networks have spread dramatically in
recent years. A prime application of these networks is file
sharing, which allows users to share content easily with other
users of a network. The decentralized architecture of file-
sharing P2P networks makes them important for freedom
of speech, sinceany network user can perform publication,
distribution and retrieval of content.

Opposition to P2P file sharing networks has been growing
just as quickly as the networks themselves. P2P networks excel
at disseminating information among millions. It is therefore
natural that individuals and organizations that prefer to limit
the distribution of information would do their utmost to censor
such networks. There are various reasons for censoring P2P
file-sharing networks, ranging from protecting copyright to re-
pressing political ideas. The standard method for implementing
censorship is to prosecute users of a file sharing network in a
court of law. Sometimes, even the threat of such prosecution
is enough to deter people from publishing, serving or reading
files in P2P networks. An analysis of what may or may not
be legally censorable is beyond the scope of this paper.

Resisting censorship of P2P file sharing networks is an
active area of research. One approach to achieving censorship
resistance is to ensureanonymity for participants in a file-
sharing network [1] – [20]. The rationale behind theanonymity
approach is that if the publisher, server and reader of a
document all remain anonymous, then legal action cannot
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be brought against them, and they are thus not affected by
censorship.

There are two disadvantages to most works that claim to
provide anonymity in P2P file sharing networks. The first is
that overhead in terms of communication is greatly increased
compared to standard P2P file sharing networks. The second,
more profound, disadvantage is that anonymity is achieved
only against limited adversaries. A real-world opponent of P2P
file sharing is often a representative of powerful interests such
as government or large corporations. An adversary of this sort
may very well use court orders to eavesdrop on traffic in the
P2P network and operate nodes in the network. Most proposals
for anonymous networks fail to ensure anonymity when faced
with such attacks.

Another approach makes it difficult to remove censored
content without destroying legitimate content. This approach,
which was introduced in [21] and [22], does not protect the
participants of the network against prosecution. Their identities
and the content they serve or read can be determined by a real-
world adversary.

Our contribution to P2P anonymity is twofold: we formally
define the new concept ofdeniability in P2P file sharing
networks, and we propose a practical network that implements
this concept. Deniability is the property of having a solid alibi:
a user of a P2P file sharing network has deniability if s(he) can
claim that his/her actions are legitimate. In other words, a user
who performs an illegitimate operation, such as downloading
censored documents, cannot be distinguished from a user who
performs a lawful operation, such as retrieving a legitimate
document.

We propose a network architecture that ensures deniability
to both reader and server in a file-sharing network. The main
idea is as follows. Each document is divided into shares by a
secret sharing scheme [23]. Each share is associated with at
least one legitimate document and possibly with a censored
document. Shares are then distributed among several servers
and stored as one share per server. Serving and retrieval of a
document is done in a way that guarantees deniability.

Our scheme ensures deniability against powerful adversaries
who can monitor all the traffic in the network and can even
view the internal state of every reader and server. The overhead
in communication and storage incurred by scheme is small.
The communication complexity is at most four times greater
than the communication complexity of a P2P file sharing
network that does not offer deniability. The amount of storage
is twice as large as what is needed in a standard P2P file
sharing network.
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A. Organization

This paper is organized as follows. In Section II, we discuss
related works. In Section III we give a simple model for a P2P
file sharing network. In Section IV we define the new concept
of deniability in P2P networks. In Section V we show our
protocol and prove several of its properties. Finally, we cover
the mathematical basis for our solution in Section VI.

II. RELATED WORK

Many works on P2P anonymity and censorship resistance
have been published. In this section we discuss a small number
of systems that are most relevant to our work.

A. Anonymous Systems

The core concept of providing Internet anonymity goes
back to the early days of the public network and has been
extensively studied since then. Chaum [1] proposed to use
an intermediary proxy (relay server or Mix) whose aim is to
hide the identity of the reader from the server. However, an
opponent could still figure out the identity of the endpoints
by eavesdropping on communication lines and by performing
timing analysis of the messages going in and out of the
relay. A common solution to this problem is to use thwarting
techniques [1], which include the sending of dummy messages
and the introduction of random delays to message forwarding.
Trusting a single relay server proved to be dangerous, since
that server could potentially be controlled by an adversary.

Later works enhanced Chaum’s MixNet approach by de-
ploying predefined or ad-hoc paths and in addition by using
encryption. Crowds [19], for example, uses symmetric encryp-
tion between every pair of adjacent nodes in a path. Crowds
is based on the idea that people can be anonymous when
they blend into a crowd. The sender forwards requests to a
randomly selected relay. Once the message is received by the
relay, the latter ”flips a coin” and decides whether to forward
the message to another, randomly chosen, relay or to send
it directly to the end server. Neither the end server nor any
of the intermediate relays can determine whether the message
was received from the originator of the message or from a
relay.

Onion Routing [8] uses a fixed, predefined path, which
is essentially a list of intermediate proxies leading to the
destination. The predefined path is established by the source
and is attached to the message. The message is sent by the
source to the destination containing layers of encryption that
are peeled off at each step to reveal the address of the next
relay on the path. The major advantage of onion routing is that
relays cannot unravel the information received or determine
destination address.

Another solution, Freenet [10] introduces a degree of server,
document and publisher anonymity; this, at the cost of greater
communication, computation, retrieval time and storage over-
head. When a user requests a document, he uses a document
identifier to send the query without being aware of the server’s
identity or location. Freenet places copies of files with similar
identifiers in predetermined areas or clusters. The query is
directed towards the ’area’ that is most likely to hold the

desired file. Responses to queries are routed in the same path
traversed by the query, only in the opposite direction. In this
way, Freenet achieves server anonymity, since no node along
the path knows the real source of the document. Publisher
anonymity is obtained by using the same mechanism for
inserting documents into the network.

A different technique to provide anonymity employs secret
sharing schemes to break data items into several parts and
distribute them among different server. In Publius [17], the
content is encrypted by a key and stored by a fixed set
of servers. The encryption key is shared by Shamir’s secret
sharing and distributed to the servers. Reading is carried out
by reconstructing the key, retrieving the encrypted document
and decrypting it.

Another solution that uses secret sharing technique is SSMP
[20]. Queries are divided using shamir’s secret sharing scheme
and spread over the network. A node that collects enough
shares reconstructs the query and forward it to a server. Replies
are sent using both Rabin’s Information Dispersal Algorithm
(IDA) [24] and Onion Routing.

Free Haven [18] is an anonymous publishing system. It is
made up of a number of servers, known as servnets, which
agree to store and provide documents for anyone. The identi-
ties of these servnets are publicly known. Communication is
carried out over a Mix-based communication layer. When a
publisher wants to publish a file he breaks it into a number of
parts usingIDA and sends each part to a different servnet.
When a reader wants to retrieve a file she must first find
the hash of the required file and send it to a servnet. The
servnet broadcasts the request to the other servnets, which then
send the pieces of the file to the reader. Free Haven provides
a certain level of publisher, server, reader and document
anonymity.

There are several problems common to all of the systems
described in this section. Typically, they offer a low level
of anonymity and result in a large communication overhead.
Anonymity is achieved against a limited adversary, however it
is compromised when the adversary may control nodes or even
monitor a peer’s traffic. Furthermore, all the solutions that use
public key cryptography are vulnerable to Man-in-The-Middle
Attacks, since there is no authentication mechanism in such
distributed networks.

B. Censorship Resistant Systems

Censorship Resistance means that it is hard or even im-
possible to remove unwanted or censored information from
the system’s servers. Systems such as Publius, Freenet and
Freehaven provide Censorship Resistance in addition to user
anonymity.

Several Censorship Resistant systems have been proposed
recently. Dagster [21] and Tangler [22] prevent removal of any
single document from the system by entangling documents
together. Removal of a censored document results in the
deletion of other which are legitimate. In the network proposed
by Serjantov [25], each peer in the system can act as a server,
forwarder, or decrypter. Each stored document is divided into
encrypted blocks and placed on multiple servers. A forwarder



3

acts as an intermediary between the servers and a reader; only
a forwarder knows the mapping between the data blocks and
the servers that store them. A decrypter is responsible for
decrypting data blocks but does not have knowledge of the
data-server mapping.

Censorship Resistant systems are not designed to protect
their users against prosecution. Therefore, integrating the
system proposed in this paper with an existing Censorship
Resistant system would provide the best of both worlds.

III. SYSTEM MODEL

A. Participants

In P2P file sharing networks, information is stored in units
known asdocuments. The publisher of a document is the
entity that places the document in the system. Theserverof a
document is the entity that stores and distributes the document.
Documents are retrieved byreaders from the servers. The
readersquery theindex so as to locate the particular server
for a required document. Although real-world documents are
of variable sizes, we assume that all documents in our system
are of fixed size. Thus, real-world documents may have to be
divided into several smaller documents or be padded into a
larger document in our system.

B. The Adversary

The adversary’s goal is to show that a censored document
was published by a certain user, retrieved by a certain reader
or provided by a specific server. In this paper, we do not
consider either attacks on storage or denial of service attacks.
An adversary may have a variety of capabilities. A limited
adversary can log into the network and act as a participating
user (reader or server) or as multiple users. A powerful
adversary, such as a government or a major corporation, can
monitor all links in the network. In Section V we describe the
resistance of our scheme against any given adversary.

C. Performance issues

Integrating deniability within a P2P network introduces
overhead. Our analysis takes into account three parameters:
Communication complexity, Storage complexity and compu-
tational complexity. Given a documentd, Communication
complexityindicates the total number of Bytes sent within the
system while inserting or retrievingd. Storage complexityis
the number of Bytes that need to be stored ford within the
system. The last parameter iscomputational complexity, which
refers to the amount of computation needed to insert a new
document, and to retrieve a document. In Section V we show
that the overhead associated with our design gives rise to an
efficient implementation of a P2P file sharing network.

IV. D ENIABILITY

A. Preface

In this paper we introduce a new concept in place of
anonymity. Deniability, as we call this new concept is the
ability of an entity to deny any connection to a particular
document. Many attempts to provide anonymity fail to provide

it against real world adversaries. In this paper, instead of
providing anonymity we achieve deniability.Reader denia-
bility, Server deniabilityand Document deniabilitycan be
viewed in formally as analogues of anonymity definition of
Free Haven [18].Reader deniabilitymeans that the reader
can deny her link to a specific document received by her,
even if an adversary controls all the servers in the system
and monitors all the traffic.Server deniabilitymeans that the
server can deny its link to a document served by it.Document
deniabilitymeans that the server can deny storing any censored
content. Formal definitions for deniability types are described
in Subsection IV-C.

B. Anonymity

One may define several types ofanonymitywith respect to
P2P networks. Each type of anonymity corresponds with a
different element within the network. In [18] the authors have
suggested definitions for the anonymity of the participants.
Reader anonymitymeans that an adversary has no way of
knowing which reader on the network has retrieved a particular
document.Server anonymitymeans an adversary has no way
of knowing which server on the network has served this
document or currently stores it.Document anonymitymeans
that a server does not know which documents it is storing.

C. Definitions

In a P2P file-sharing environment it is logical to divide all
documents into two categories denotedX and L. Category
X contains the documents that one may want to deny any
relation to (e.g. censored or unwanted). CategoryL contains
the remaining documents, that are legitimate and bear no
controversial content. An example of a legitimate document is
freeware code, while a song under copyright law is censored.

Definition 1: A record is a contiguous block of Bytes of
fixed length.

Definition 2: A databaseis a set of records and is stored
by a server in a P2P file sharing system. Two operations are
defined on a database:insertionof a new record andretrieval
of a given record.

Definition 3: A record r is associatedwith a documentd
if there exists a set of recordsR such thatr ∈ R and two
conditions are satisfied:

• Given R it is possible to obtain the documentd.
• Given R \ {r} it is not possible to obtaind.

Definition 4:A set of recordsR is called aminimal retrieval
set for a set of documentsD if:

• Every document inD can be obtained from the records
in R.

• There is no subset of recordsR′ ⊂ R such that all the
documents inD can be obtained fromR′.

Definition 5: A reader maintainsreader deniabilitywhen
retrieving a set of recordsR, if R is a minimal retrieval set
for a set of legitimate documentsD ⊆ L.

Definition 6: A database maintainsdocument deniability
if for every recordr in the database, there is a legitimate
documentD ∈ L such thatr is associated withd.
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Definition 7: A server maintainsserver deniabilityif every
record r that the server provides in answer to a retrieval
request, is associated with a legitimate documentd ∈ L.

V. PROPOSEDARCHITECTURE

A. Preface

In our system, each document is divided into pieces called
shares. A sharesh is associated with a documentd and vice
versa, if by usingsh (along with other shares) it is possible
to reconstructd. Each share can be regarded as arecord
(Definition 1), since shares are the basic component in every
server’s database.

The main idea of our system is to affiliate each non
legitimate document with a set of legitimate documents. In this
way serving or retrieving the non legitimate document seems
identical to serving or retrieving the affiliated set of legiti-
mate documents. Therefore, an adversary cannot distinguish
between the two transactions and deniability is preserved.

Table I contains notation that is used in this section.

B. Indexing

Retrievinga document in the system relies on theindexing
mechanism. Theindexingmechanism contains a database that
includes information about the documents, the shares and
their locations. Theindex enables a user to search a specific
document within the system in order to get the set of all the
shares associated with the document and the locations (servers)
of those shares. Theindex also enables a user to search a
specific share in order to get the set of all the documents
associated with that share. Anindex in our system may be
viewed as a bipartite graph, as shown is Fig. 1, the square
nodes indicate the documents and the circular nodes indicate
the shares. Each edge in the graph indicates that a particular
share is associated with a particular document and vice versa.
For example, in the figure, the document`1 is associated with
the sharessh1, sh2 and sh3 and the sharesh1 is associated
with documents̀ 1 andx1.

Anonymous indexing, which means that the user’s query is
not revealed, is assumed in our design and is essential in order
to preservereader deniability. Anonymous indexingcan be
achieved by downloading the entire index or more efficiently
by Private Information Retrieval (PIR) [26] – [30].

C. Deniability transformation

In order to implement our deniability scheme, we design a
new function calledDeniable Secret Sharing, DSS. Deniable
Secret Sharing is a variation of Shamir’s Secret Sharing [23],
which may have several shares fixed before the sharing takes
place.

Formally speaking,DSSt takes as input a documentd and
k shares denoted bysh1, sh2,...,shk, where0 ≤ k ≤ t−1. The
output ofDSSt is t shares denoted bysh1, sh2,...,sht. DSSt

is a t-threshold secret sharing scheme and thet output shares
allow to reconstruct the original documentd. An illustration
of the input and output ofDSSt appears in the left side of
Fig. 2. Note that the number of output shares is identical to
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Figure 1. Indexingsystem;¤ - document,© - share

the threshold and that the firstk output shares are the same
as thek input shares.

The documentd, originally inserted intoDSSt is the result
of entering thet output shares ofDSSt as the input of the
reciprocal functionDSS−1

t (see the right side of Fig. 2). We
explain the basis forDSSt andDSS−1

t in Section VI.
DSSt is used in two ways. For the initialization phase (no

shares exist yet), we useDSSt with k = 0. The other way in
which DSSt is used, is withk = t− 1, so that the only new
share in the output is the last sharesht, sincet− 1 shares are
used as input.

D. Publishing - Insertion of a new document

The shares in the system are divided into three categories.
The first category,LL, contains shares that are associated only
with files from the legitimate setL. The second category,
XX, contains shares that are associated with files from setX
only. The last category,XL, contains shares associated with
documents from both setsX and L. Shares from category
XX are undesirable since a user that stores such a share can
be implicated as serving censored content. In other words,
the user can’t claim that one of the legitimate documents in
the network can be constructed with such a share. Hence, all
shares in the system are put into a’pool of shares’that contains
only shares from categoriesLL andXL.

The first document to be inserted by a publisher to the
system is a legitimate document. In thisInitialization phase,
all the shares are associated only with legitimate content and
can therefore be added into thepool.

The general algorithm for inserting a new document (see
Algorithm 1), which is described below takes as input three
parameters;d is the document to be inserted into the network,
` is an arbitrary legitimate document andpool is a pointer to
the pool of shares.

Insertion (d, `, pool): The publisher constructs a set of
shares,Ψ, by randomly selectingt− 1 shares from the pool.
The documentd and Ψ are put intoDSSt and the output
is a set of sharesshd[1, t] (t shares that are associated with
d). If d is a censored document, i.e.d ∈ X, then the new
shareshdt ∈ XX and so it cannot be put into thepool. In
order to eventually publish the shareshdt, the publisher does
the following. It constructs a set of shares,Θ, by randomly
selectingt − 2 shares from the pool and adding the share
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TABLE I
NOTATION

Notation Description

X Set of censored documents
L Set of legitimate documents
XX Set of shares associated with X documents only
LL Set of shares associated with L documents only
XL Set of shares associated with both X and L documents
t The number of shares in the output ofDSSt

k The number of shares in the input ofDSSt

shd[1, i] Set of i shares associated with documentd
shdi The i-th share associated with documentd
Λi Set of all documents associated with shareshi
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Figure 2. (left)DSSn,t ; (right) DSS−1
n,t. DSSn,t - Input: k shares and documentd; Output:n shares.DSS−1

n,t - Input: t shares; Output: documentd

shdt. The legitimate document̀ and Θ are put intoDSSt

and the output is a set of sharessh`[1, t]. Now, the shareshdt

is associated both withd and`, thereforeshdt ∈ XL and can
be put in thepool along with the new share that was created
for `, which is denoted bysh`t.

An example of inserting a document, whered ∈ X andt =
3 appears in Fig. 3. In this example two random sharesshR1

andshR2 along withd are put intoDSSt. A new random share
shR3 along with shdt and a legitimate document` are again
put intoDSSt function. Now the shareshdt is associated with
` and thereforeshdt ∈ XL and can be put into the pool, along
with the sharesh`t. Note that it is possible to reconstructd
by putting the sharesshR1, shR2 and shdt into DSS−1 and
reconstruct̀ by putting the sharesshR3, shdt and sh`t into
DSS−1.

Algorithm 1 Insert (d, `, pool)

Ψ ← t− 1 random shares from pool
shd[1, t] ← DSSt(Ψ, d)
if d ∈ X then

Θ ← t− 2 random shares from pool
Θ ← Θ

⋃{shdt}
sh`[1, t] ← DSSt(Θ, `)

end if
Put shdt andsh`t (if d ∈ X) into the pool and update the
index

E. Document Deniability

In this section we show that the database of every server in
our system has the property ofdocument deniability.

Theorem 1: The database of every server in the network
ensures document deniability.

Proof: We provedocument deniabilityby induction. An
empty database trivially has the property ofdocument denia-
bility. We next show that adding a document to the database
using Algorithm 1 maintains this property.

When a legitimate documentd is inserted, only one new
share is created -shdt. This share along with thet− 1 shares
that are randomly selected from the pool are necessary and
sufficient to obtaind. Hence, according to Def. 3,shdt is
associatedwith d. Therefore, according to Def. 6, if the system
maintaineddocument deniabilitybefore the insertion ofd, it
still maintainsdocument deniabilityafter the insertion.

When a censored documentd is inserted, two new shares are
added to the database:shdt andsh`t. Both new shares together
with t− 2 shares that are randomly picked from the pool are
necessary and sufficient to obtain`. Hence, due to Def. 3 they
areassociatedwith a document̀ ∈ L. Therefore, according to
Def. 6, if the system maintaineddocument deniabilitybefore
the insertion ofd, it still maintainsdocument deniabilityafter
the insertion.

F. Retrieval

A naive way in which a reader can retrieve a documentd
is as follows. First, the reader queries the index for all the
shares ofd and their locations. Then, the reader retrieves all
the shares ofd and reconstructs the document. The problem
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Figure 3. Example for shares creation in the process of inserting a censored documentd

with this procedure is that ifd ∈ X then the reader does not
preserve the property ofreader deniability. In particular, an
adversary that monitors all the traffic received by the reader
can link the reader to the retrieved document.

In order to prevent the adversary from linking the reader to
a censored documentd, we suggest another way to download
d (see Algorithm 2). Ifd ∈ L then the reader simply retrieves
all of the shares ofd. However, if d ∈ X then for each
share of d the reader queries the index for a legitimate
document associated with it, and retrieves all the shares of
these legitimate documents. For example, if the reader wants
to obtain the documentx1 in Fig. 1, the first step is to query
the index for the shares associated withx1, the result is{sh1,
sh2, sh4}. For each of those shares the reader queries the
index for the list of documents associated with them. The
result is {`1, x1} for sh1, {`1, x1, `2} for sh2 and {x1,
`2, `3} for sh4. The reader picks one legitimate document
from each list and retrieves it, e.g.,`1 for sh1 and`2 for sh2

and for sh4. In fact, using this method, the reader retrieves
three documents:̀1, `2 andx1. No adversary can distinguish
between this situation and the one where the reader retrieves
only the legitimate documents̀1 and `2.

We say that a sharesh is alive if it is possible to retrieve a
legitimate document associated with it, i.e., all of the shares
of the legitimate document exist in the system. Not all of the
shares in the system are necessarilyalive because users may
log out and shares may be deleted. If during retrieval one of
the sharesshi is not alive then the reader does not retrieved.

Algorithm 2, which is executed by a reader, receives as input
a documentd to be retrieved and a pointer to the index. Two
operations on the index are used: index.get-shares receives as
input a documentd and returnsshd[1, t], all the shares that
are associated with that document, while index.get-documents
receives as input a shareshi and returnsΛi, all the documents
with which the share is associated.

Theorem 2: The network ensures reader deniability.
Proof: In Algorithm 2, the set of sharesshd[1, t] is

retrieved when the reader wishes to obtaind. If d ∈ L then
shd[1, t] is a minimal retrieval set of shares (equivalently,
records) for the set of documents{d} ⊆ L. Thus by Definition

Algorithm 2 Retrieve (d, index)

shd[1, t] = index.get-shares(d)
if d ∈ L then

retrieveshd[1, t]
else

if ∃i, s.t. shdi is not alivethen
STOP

else
for i=1,...,t do

Λi = index.get-documents(shi)
Let `i ∈ Λi

⋂
L

sh`i [1, t] = index.get-shares(`i)
Retrievesh`i [1, t]

end for
end if

end if
d = DSS−1

t (shd[1, t])

5, the reader maintainsreader deniability.
If d ∈ X then if one of the shares inshd[1, t] is not alive

then the algorithm halts and no retrieval is performed, trivially
maintainingreader deniability. Otherwise, the reader retrieves
for everyi = 1, . . . , t the set of sharessh`i [1, t] in which every
share isassociatedwith the legitimate document̀i. Indeed,
sincesh`i [1, t] is a minimal retrieval set for̀i ∈ L we have
that

⋃t
i=1 sh`i [1, t] is a minimal retrieval setfor {`1, . . . , `t},

where{`1, . . . , `t} ⊆ L. Hence, according to Definition 5 the
reader maintainsreader deniability.

The reader can settle forpartial reader deniabilityin case
of a weak adversary. We say that an adversary is weak if it
can intercept at most one retrieved share during the retrieval
procedure. For example, it controls only one server. Note that
it is possible to generalize this definition of weak adversary
to any number of monitored sharesm as long asm < t.
Partial reader deniabilitymeans that the reader can deny that
she retrievedd as long as at most one share is observed by
an adversary. Retrieval achievingpartial reader deniability
is carried out by checking if all the shares ofd are alive,
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and if they are, retrieving all these shares. All the shares
must bealive because if a share is associated solely with
a censored document, an adversary can link the reader with
that document. In this way the communication overhead is
decreased tot as discussed in Subsection V-G.

In order to maintainserver deniability, when a server gets a
request for a particular sharesh it has to verify thatsh is alive
before serving it to the reader. Otherwise, if the server serves
a non live share, an adversary can link between the server and
the censored content associated withsh. If sh is not alive the
server deletes the share and updates the index.

Theorem 3: The network ensures server deniability.
Proof: Since the server provides only shares that are

associated with legitimate documents, according to Def. 7, the
server maintainsserver deniability

G. Performance analysis

In this section we analyze the complexity of the system in
terms of communication, computation and storage.

Given a documentd, Communication complexityindicates
the total number of Bytes sent within the system while insert-
ing or retrievingd. Insertingd, if d ∈ L, involves retrieving
t− 1 random shares from the pool of shares and sending one
new share to a server. Thus the communication complexity is
t|d| Bytes. If d ∈ X the total communication complexity for
insertion is(2t− 1)|d| Bytes. TheCommunication complexity
for retrieving a document again depends on the type of the
document. If d ∈ L, then the reader has to retrieve only
t shares of size|d| Bytes each, with totalCommunication
complexity of t|d| Bytes. Otherwise, ifd ∈ X, then the
reader has to retrieve one legitimate document for each share
associated withd, i.e., the reader has to retrieve at mostt
legitimate documents, with totalCommunication complexity
of t · t|d| = t2|d| Bytes. If partial reader deniability is
sufficient the reader has to retrieve onlyt shares, thus the
total Communication complexityis reduced tot|d| bits.

Storage complexityindicates the number of Bytes stored
within the system for each document. In case of a legitimate
document, only one share is added to the system, (t−1 shares
are randomly selected and only one share is created). Therefore
the storage complexity is|d| Bytes. If a censored document
is inserted, the process is repeated twice (see Section III),
therefore, total of two new shares are created, yielding storage
complexity of2|d| bits.

The Computation complexityis based on Shamir’s secret
sharing [23]. The complexity for dividing a document of size
of |d| into t shares, or reconstructingd from its t shares is
O(t|d|).

Improving the performance of the system can be achieved
by decreasing the thresholdt as much as possible. From the
point of view of deniability, the value of the thresholdt
can be as small as two; all deniability types (reader, server
and document) are preserved. The results of performance
analysis usingt = 2 can be found in table II. These results
compare favorably with the overhead in various P2P file
sharing networks that offer anonymity for users.

VI. D ENIABLE SECRETSHARING

In [23] Shamir has first shown how to share a secret. In this
section we explain how to use Shamir’s secret sharing scheme
to perform the deniable secret sharing presented as a black
box in Section V.

A. Shamir’s Secret Sharing

In this section we explain Shamir’s secret sharing in brief;
for further details see [31]. The idea of secret sharing is to start
with a secret, and divide it into pieces calledshares, which are
distributed amongst users in a way that allows reconstruction
of the original secret. The mathematical basis is as follows.
To share a secrets amongn entities and ensure that no less
than t (t ≤ n) participants are required to recover the secret,
a trusted partyT creates a random polynomialf(z) of degree
t− 1:

f(z) = a0 + a1z + ... + at−1z
t−1 (1)

This polynomial is constructed over a finite fieldGF (q),
which is known to all participants. The coefficienta0 is the
secrets and all other coefficients are random elements in the
field. T publicly choosesn random distinct evaluation points:
zi, and secretly distributes the sharesshi(s) = (zi, f(zi)),
i = 1...n to each participant. We can prove that the secret
s can be reconstructed from every subset oft-shares. Using
Lagrange interpolation, givent points (zi, yi), i = 1...t, we
have:

f(z) =
t∑

i=1

yi

t∏

j=1,j 6=i

z − zj

zi − zj
(modp) (2)

Thus,

s = f(0) =
t∑

i=1

yi

t∏

j=1,j 6=i

−zj

zi − zj
(modp) (3)

Therefore, each group oft shares is sufficient to compute the
secrets.

B. Deniable secret sharing - Details

In this subsection we show how to implementDSSt, (see
Fig. 2) using Shamir’s secret sharing. The inputs of theDSSt

function are the sharessh1, ...shk, where 0 ≤ k ≤ t − 1
and a documentd. The output ofDSSt is a set oft shares.
We use thek + 1 input arguments in order to construct an
interpolation polynomial of degreet − 1: f(0) = d, f(1) =
sh1, f(2) = sh2,...,f(k) = shk. If k + 1 < t we randomly
select valuesshk+1,...,sht and thus the remaining points are:
f(k + 1) = shk+1,...,f(t) = sht. These shares now represent
the same interpolation polynomial that appears in Equation 2.
The inputs of theDSS−1

t function are the sharessh1, ...sht

and the output isf(0), wheref is the interpolation polynomial.
Fig. 4 shows a typical example of the usage ofDSS in our

network. It includes three lines (polynomials of degree one),
representing three documentsx1, `1 and`2. The values of the
polynomialfx1 arefx1(0) = x1, fx1(1) = sh1 = f`1(1) and
fx1(2) = sh2 = f`2(2), i.e., the first share ofx1 is the same
as the first share of̀1 and the second share ofx1 is the same
as the second share of`2.
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TABLE II
PERFORMANCE[BITS]; t = 2, |d|-DOCUMENT SIZE

Legitimate Doc Censored Doc
Communication - insert 2|d| bits 3|d| bits
Communication - retrieve 2|d| bits 4|d| bits

partial - 2|d| bits
Storage |d| bits 2|d| bits
Computation (insert / retrieve) O(|d|) O(|d|)

x

1


sh

1


z
1
 2


sh

2


f

l


f

l


f(z
)


f

x

1


1


2


Figure 4. Example to the polynomial presentation ofDSS
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